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This article gives the basics of the calculation technique for the action of mobile loads of long 
underground transport structures such as tunnels and pipelines taking into account the influence of the 
earth's surface. On elastic models, the dynamic behavior of unreinforced and reinforced structures at 
different depths of bedding is considered, as well as the effect of the type and parameters of the 
running load on the stress-strain state of the rock massif. The speed of the movement of the cargo is 
considered subsonic, which corresponds to the modern speeds of transport in the investigated 
underground objects. To describe the motion of a half-space and thick-walled shells, dynamic 
equations of the theory of elasticity in displacement potentials are used and for thin-walled shells, the 
classical equations of the theory of thin shells are used. Equations are written in a moving coordinate 
system associated with the load. A closed system of differential equations is constructed. The system 
of differential equations is solved by the method of separated variables, integral Fourier transforms, the 
Romberg, Müller and Gauss method. From the analysis of the obtained numerical results it follows that 
in these cases the reinforcement of the tunnel leads to a decrease in the dynamic effect of the moving 
loads on the earth's surface. The earth's surface has an uneven effect on the stress-strain state of the 
rock massif under the action of moving loads. For a load with a shorter period, this effect is almost not 
noticeable and becomes noticeable for very small periods. 
 

Key words: Thick-walled shell, stationary load, cavity, mobile coordinate system, Lame potentials. 
 
 

INTRODUCTION 
 

In many cities, plans have been made to build 
underground highways of considerable length as well as 
tunnels for new high-speed transport. Widespread 
development in the construction of underground main 
pipelines is necessary for transporting virtually the entire 
volume of produced natural gas, most of the oil and 
various    cargoes.     Modern     transport     underground 

structures in accordance with the requirements of 
reliability and durability are among the most important 
objects of underground construction. Along with the static 
calculation of such structures (Bulychev, 1989), their 
dynamic calculation calculation (Bakirov and Lai, 2002; 

Yerzhanov et al., 1989) is necessary. Among the dynamic 
loads  and   impacts   on   underground   structures    in   the 

 

*Corresponding author. E-mail: safarov54 @mail.ru 

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


 

Safarov et al.         97 
 
 
 

 
 

Figure 1. The calculated scheme of the reinforced tunnel and underground pipeline. 

 
 
 
form of seismic waves of natural or artificial origin should be 

singled out. Difficulties in the calculation of objects in the 
presence of mobility of the load multiply increase in 
comparison with the volume of static calculations. 
Especially, great mathematical difficulties appear when 
taking into account the massiveness of the driving loads. 
The study of the dynamics of extended underground 
structures under the action of various perturbations leads 
to the solution of boundary value problems in the 
mechanics of continuous media (Jones et al., 2002; 
Grigolyuk and Gorshkov, 1974; Volmir, 1979; Guz et al., 
2002; Hshley and Haviland, 1950). 

Work in this direction with a sufficiently detailed 
bibliography can be found in monographs (Movchan, 
1965; Carrier, 1989; Mindlin and Blech, 1953; Junger 
1953). The work (Skalak and  Friedman ,1958; Lugovoy 
et al.,  1991; Hawyood, 1958; Volmir,1972; Uflyand,1968; 
Novatsky, 1975) and many other publications are 
devoted to a generalization and systematization of 
research results on a comprehensive study of the 
dynamic behavior of cylindrical shells of various designs. 
The stationary solution of the dynamics of an infinitely 
long thin cylindrical shell immersed in an acoustic 
medium and subjected to an axisymmetric load moving 
with a constant velocity in the axial direction was 
investigated (Pozhuyev,1984). In (Kurkchiev, 1970), the 
reaction of an infinitely long cylindrical shell in an acoustic 
medium to the action of a moving stepped plane shock 
wave was considered. The solution is given in 
generalized coordinates without taking into account the 
extension of the middle surface of the shell. In (Morse 
and  Feshbakh,1960; Pozhuyev, 1977), such problems 
are solved by the method of integral transformations. 
Later, hinged-supported shells were considered in 
Herrmann and Baker,1967; Pozhuyev, 1978; 
Pozhuyev,1978; Pozhuyev, 1980). In (Slepian, 1972; 
Pozhuyev, 1983), the nonlinear dynamics of shells was 
investigated. In (Guz et al.,  2002), the ax symmetric 
vibrations of a priestesses shell  were  studied  under  the 

action of a moving force, where the Bubnov-Galerkin 
method was applied to geometric coordinates and the 
Bogolyubov-Mitropolsky coordinate in time coordinate. 
Starting from the equation of shell motion (Bozorov et al., 
1996), the dynamics of a priestess’s cylinder under the 
action of two types of loads were studied: a concentrated 
normal force moving along a circle at a constant velocity 
and a point wise normal force moving along the axis of 
the cylinder. 

An approximate model approach for determining 
vibrations on a free surface from moving loads in 
reinforced tunnels of a rectangular and circular profile has 
been applied (Pozhuyev, 1984). The action of a mobile 
periodic load on a circular cylindrical cavity in an elastic 
half-space for subsonic speeds of load motion was 
considered in (Watanabe,1984; Pozhuyev, 1984), where 
the motion of a half-space described the dynamic 
equations of the theory of elasticity (Yakupov,1979) in 
Lamé potentials (Chonan ,1981; Datta et al.,  1984). 

To solve problems in this paper, a model research 
method is used. The tunnel is modeled as an infinitely 
long circular cylindrical cavity located in a homogeneous 
and isotropic linearly elastic half-space parallel to its 
horizontal boundary. The cavity can be supported by a 
homogeneous or layered elastic shell (in which case the 
tunnel can be considered as an underground pipeline). 
The nonstationary load acts on the surface of the cavity 
or on the inner surface of the shell reinforcing cavity. The 
speed of the load is assumed to be subsonic. 
 
 
STATEMENT OF THE PROBLEM FOR A CIRCULAR 
TUNNEL 
 

Using the model approach for research, the tunnel was 
represented as an infinitely long circular cylindrical cavity 
with a radius r = R, located in a linear viscoelastic, 
homogeneous and isotropic half-space x ≤ h (Figure 1) 
parallel to  its  horizontal  boundary (the  earth's  surface). 
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The half-space reaction was defined on a moving 
coordinate system with a constant subsonic velocity c 
along the cavity surface in the direction of the Z-axis of 
the load P. 

For this, the equations of motion of an elastic medium 
in vector form were used (Parnes,1980;  Safarov ,1992): 
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Here ),,( zуx uuuu  is the vector of displacement of 

points of the medium; j is the material density; 
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the Poisson's ratio. 
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where jЕ  is the operational modulus of elasticity, which 

have the form (Safarov and  Axmedov ,2018;  Safarov et 
al.,2017 )::  
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where  t  is the arbitrary time function;  EjR t   is 

the relaxation core; 0 jE  is the instantaneous modulus of 

elasticity; the integral terms were assumed in Equation 5 

to be small, then the functions     Ri tt t e    , 

where  t  is a slowly varying function of time and R  

is the real constant. Further, applying the freezing 
procedure (Safarov et al., 1917), we note relations 
(Equation 2) as approximations of the form:  
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S
, respectively, are the cosine and 

sine Fourier images of the relaxation core of the material. 
As an example of a viscoelastic material, three 
parametric relaxation nuclei were taken as 

    1/ tAetR t
.   On     the    influence   function,  

 
 
 
 

 is the usual requirements of inerrability, 

continuity (except for ), sign of uncertainty and 

monotony: 

 
 

where u


 is the vector of displacements of the 

environment. 
Since the steady-state process is considered, the strain 

pattern is stationary with respect to the moving load. 
Therefore, it is convenient to move to a moving 

coordinate system  = z – ct, connected with the load P. 
Then Equation 1 can be rewritten in the form: 
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Here, Mp = c/cp, Ms = c/cs are the Mach numbers; 

   2pc , sc  are complex 

propagation velocities of expansion waves: compression 
and shear in a medium. 
 
  
TASKS OF THE ACTION OF MOBILE LOADS ON AN 
UNREINFORCED TUNNEL 
 
In the theoretical aspect, the solution was based on the 
papers (Safarov et al., 2017; Safarov et al., 2017). In 
(Safarov et al.,  2017), the first and second boundary-
value problems of the theory of elasticity for a half-plane 
with a point source of stationary waves concentrated 
within it, the potential of which is represented in terms of 
cylindrical functions, are solved by the method of 
expanding potentials on plane waves. And in (Safarov et 
al., 2017), using this approach, the problem of the 
stationary load on the contour of a circular hole in a half-
space was solved. The idea of these papers can be used 
on the superposition of solutions and the re-expansion of 
plane waves into series in cylindrical functions; in 
(Safarov et al., 2017), in contrast to the exact analytical 
solution for the subsonic case, the velocity of a moving 
load is less than the velocity of the Rayleigh waves.  

Since the steady-state process is considered, the strain 
pattern is stationary with respect to the moving load.  
Therefore, it is convenient to move to the mobile 

coordinate system  = z – ct, connected with the load P. 
Then Equation 1 can be rewritten in the form: 
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When the load acts on the cavity surface, we have: 
 

  ,,),,( rjPjRrrj
                         (5)

 

 

where rj is the components of the stress tensor in a 

medium, Pj(,) is the components of the intensity of the 

mobile load P(,). 
Since the boundary of the half-space is free from loads, 

x = h: 
 

0 xxyxx
                                  (6)

  

 
Equation 1 was transformed by expressing the 
displacement vector of an elastic medium through Lame 
potentials: 
 

rotgrad 1 u                                        (7) 

 

Potential  can be represented in the form [44]: 
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where e  «ort axis ». 
With this in mind, Equation 5 takes the form: 
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It follows from Equations 3 and 8 that the potentials j 
satisfy the modified wave equations: 
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Here,  М1 = Мp, М2 = М3 = Мs. 
The components of the stress and displacement of the 

material point through the potentials j were expressed. 
The components of the vector u (Equation 7) in 

cylindrical (Equation 8) and Cartesian (Equation 9) 
coordinate systems (Safarov et al., 2017): 
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22 1 ss Mm  . 

Volumetric strain: 
  

1
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(12) 

 
Using Hooke's law, taking into account Equations 9 and 
11, we find expressions for the stress tensor components 
in cylindrical and Cartesian coordinates: 
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Thus, to determine the components of the stress-strain 
state of the medium, it is  necessary  to  solve Equation 9  
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together with the boundary conditions. 

In cases where circular tunneling or underground 
pipelines are thin-walled structures, the considered model 
of the tunnel can be adopted as a design model, with the 
reinforcement of the cavity by a thin elastic cylindrical 
shell of thickness h0 (Figure 1). Because of the small 
thickness of the shell, we assume that the surrounding 
array is in contact with the shell along its median surface. 
The load P, moving with a constant subsonic speed c in 
the direction of the Z-axis, acts on the inner surface of the 
shell. 

To describe the motion of the shell, we use the 
classical equations of the theory of thin shells (Safarov et 
al., 2016): 
 

 ,
2

1

2

1

2

1

2

1

00

0

2

0
2

0

0
0

000
2

0

2

0
2

2

0

2

0
2

zz
zrzz qP

ht

u

z

u

Rz

u

R

u

Rz

u

































   

 
 ,

2

1

2

111

2

1

2

1

00

0

2

0
2

0

0
0

0

22

0
2

22

0
2

00
2

0


 
































qP

ht

uu

R

u

Rz

u

z

u

R
rz  

 rr
rr

r
z qP

ht

u

R

u
u

hu

Rz

u

R























 

00

0

2

0
2

0

0
02

0
0

22
2
00

2

00

2

1

2

1

12

1            

                                                                                (13) 
 

where u0z, u0, u0r  are the displacements of the points of 

the middle surface of the shell; Pz, P, Pr  are components 
of the intensity of the mobile load P; 

RrrrrRrrRrrzz qqq


 ,,  are 

components of the reaction surrounding the shell 

environment; 0, 0, 0 are the Poisson's ratio, the shear 
modulus and the density of the shell material, 
respectively. In the moving coordinate system, Equations 
13 are rewritten in the form: 
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The motion of the half-space is described by the dynamic 
equations of elasticity theory in Lame potentials. 

Lets consider two cases of conjugation of a shell with 
an environment: rigid and sliding. In these cases, the 
boundary conditions have the form: 
 
(1) At sliding contact: 
 

0 Rrrj ,  ,j     0r r R rw w                 (14,а) 

 

(2) At hard contact: 

 
 
 
 

jRrj uu 0 , rj ,,                       (14,b) 

 
Thus, in this formulation, in order to determine the 

components of displacements and stresses of the 
medium, it is necessary to jointly solve Equation 13, 
subject to the boundary conditions (Equation 14), 
depending on the conjugation condition of the shell with 
the medium. 

In the moving coordinate system, we apply to the 
equations of motion and the boundary conditions a 
complex Fourier transform of the form Safarov et al., 
2017): 
 

   




  de i                          (15) 

   



 


 dei

2

1
   .  

 
Writing general solutions of the transformed equations of 
motion of the tunnel in the form (Equations 4 to 15), we 
find the following system of algebraic equations for 
determining the dimensionless transform ants of 
displacements of an intermediate surface: 
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The stress at the boundary of the soft layer and elastic 
among (r = b) in the dimensionless form has the form: 
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Here,  = с/св  is the ratio of the density of the 

environment to the density of the soft layer; 



,  are 

functions of  and .  
The following expression for the load was found which is 
transferred to the shell from the side of the soft layer:   
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Elements of the determinant keAdet
 

is computed 
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where is   ;1 2
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functions; 110
II  is the modified Bessel functions. The 

general solution of the equations of the motion of the 

environment has the form  pSf CCC  :  
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His expression for the original transform of the normal 
displacement has the form: 
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Defining   5. . . . . . .2.1 jj  is obtained from  

keAdet  by replacing j = 20 by the column C with the 

elements {0, 0, 1, 0, 0}. After this function: 
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from Equation 16 can be calculated from 

formulas: 
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where 
iem  minors of the element Аje  .  

For a specific value of the load velocity C, the 
denominators under the integral expressions in formulas 
(Equation 14) are transcendental functions with respect 

to  С real coefficients depending on C, as well as on 

the mechanical parameters of the shell and the layer. 
Analysis of the integrals of treatment must begin with 

consideration of cases (Safarov,1992)   ,0, 0 CD 
 

which is equivalent to the construction of the dispersion 
relation in the corresponding problem of propagation of 
free waves and the determination of the denominator 
from the dispersion curves of the roots for the chosen 
velocity of the load C at С< С5 are possible for cases. 
Figure 2 shows the change in the movement of the filler, 
depending on the thickness of the bodies for different 
values of the rigidity of the aggregate. As can be seen 

from the drawing (  100, 50,10,2), that for a sufficiently 

rigid layer (  100), the deflections of the shell essentially  



 

102          Afr. J. Math. Comput. Sci. Res. 
 
 
 

 
 

Figure 2. Shell deflections as a function of thickness. 
 
 
 

decrease Safarov et al., 2017; Safarov et al., 2017). 
 
(1) For a given speed C, there are one or two different 
denominator roots. 
(2) For some values of C, the denominator has a double 
root. This case corresponds to a minimum of the 
corresponding dispersion curve in Figure 2. Such a 
velocity is called resonance and is denoted by С

х
. A 

resonance effect appears, or which deflections and 
contact pressures tend to infinity. 
(3) For a given value of C, the denominator has no roots  
on the real axis, as shown in Figure 2, this will be either, 
С<Сф (up to resonance mode). At this speed of motion, 
the inversion integrals are not special and can be found 
by effective numerical methods. 

Dividing the integral (Equation 17) into two terms: 
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The value of the integral (Equation 18) was found by the 
numerical method [50]. When the integral is calculated by 
the Romberg method, it is necessary to repeatedly 
calculate the integrand function. The inverse Fourier 
transform (Equation 29) was numerically fulfilled. It is 
shown that at an integration step of 1.01, the error of the 
procedure does not exceed 0.3 to 0.5%.     
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CONCLUSIONS 
 
(1) From the analysis of these results, it follows that for 
any conjugation of the shell with the array, the 
reinforcement of the tunnel leads to a decrease in radial 

displacements and compressive axial stresses (). The 
effect of the shell on the nature of the change in normal 

stresses () is somewhat different; these stresses 
increase in the central parts of the tunnel arch. As the 
thickness and stiffness of the sheath material increase, 
the displacement and stresses decrease. Contact 
conditions also affect the stresses and permeations of the 
contour of the section. 
(2) All the considered load velocities, with a relatively 
small period T = π / 4 and the fluidity of the medium (0 <A 
<0.48), the components of the stress-strain state of the 
earth's surface are practically zero. With a decrease in 
the period (T / h <0.4), as calculations have shown, an 
entire region of the array with zero components begins to 
form from the earth's surface, which covers the entire 
array with a sufficiently small period, except for a small 
thickness of the layer around the tunnel. 
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In this article, an exact solution of the Telegraph equation is solved by -Expansion method and 

this is one of the most popular example both linear and non-linear partial differential equations. The 

-Expansion method is simple and powerful analyzed for getting some sets of exact solutions. To 

develop the theory and to visualize the graph, the mathematical software MAPLE was used. This 
method also gives us various kind of heat and wave equations which are implemented not only various 
types of heat and wave equation but also take a good decision from figure. 
 
Key words: -Expansion method, Telegraph equation, periodic heat, periodic wave. 

 
 
INTRODUCTION 
 
Nonlinear partial differential equations play a very 
important role not only in engineering sciences such as 
quantum mechanics, fluid mechanics but also in 
mathematical and chemical physics, for example 
geochemistry, optical fibers, plasma physics, meteorology 
and biology. As non-linear partial differential equations 
are difficult to solve, so many powerful methods are 
applied to solve such as Hirota’s bilinear transformation 
method (Hirota, 1973), the tanh-function method (Malfliet, 
1992), the extended tanh-coth method (Nassar et al., 
2011), the exp-function method (Islam et al., 2015), the 
adomian decomposition method (Adomian, 1994), the 
function-Expansion method (Zhou et al., 2003), the 
auxiliary equation method (Sirendaoreji, 2011), the 
Jacobi elliptic function method (Ali, 2011), the modified 

exp-function method (He et al., 2012), the -

Expansion method (Zaman and Sayeda, 2013; 
Manafianheris, 2012; Taghizade and Neirameh, 2010; 
Taha and Noorani, 2014;  Naher and Abdullah, 2012; 
Verma et al., 2013), the homotopy perturbation method 
(Mohiud-Din, 2007), the homogeneous balance method 
(Zayed et al., 2004), the modified simple equation 
method (Khan and Akbar, 2013), He’s polynomial 
(Mohyud-Din et al., 2009), asymptotic method and nano-
mechanics (He, 2008), vibrational iteration method 
(Mohyud-Din et al., 2010), the casoration formulation (Ma 
and You, 2004), the frobenius integrable decomposition 
(Ma and You, 2004), the extended multiple Riccati 
equations expansion method (Ma et al., 2007), and the 
enhanced -Expansion method  (Islam  et al., 

2013a, b). Various types of nonlinear equations have 
been solved by many researchers by different methods. 
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The Zakharov-Kuznetsov equation and the (2+1) 
dimensional Burgers equation, which graphical behaviors 
have been shown by Islam et al (2013) by enhanced 

 '/G G -Expansion method where the Boussinesq 

equations (Islam et al., 2013b) have been solved by 
Akber and Kamruzzaman with this method. Generalized 
Reccati equation (Zaman and Sayeda, 2013), BBM and 
MBBM equation (Manafianheris, 2012), TRLW and 
Gardner equations (Taghizade and Neirameh, 2010), 
Fisher’s equation (Taha and Noorani, 2013), the Fourth 
Order Boussinesq Equation (Naher and Abdullah, 2012), 
shallow water wave equation (Verma et al., 2013) are 

 '/G G -Expansion method. To the best of the authors’ 

knowledge, Telegraph equation has not been solved by 

using -Expansion method. Here, Telegraph 

equations are solved by using -Expansion method 

which has been already proposed by the Chinese 
mathematicians (Wang et al., 2008) for which the wave 
and heat solution of the non-linear evolution equations 
are obtained. 
 
 

THE  -EXPANSION METHOD 

 
The -Expansion method for finding of non-linear evolution 

equation (Hirota, 1973) was discussed. Suppose that a non-linear 

equation say in two independent variables  and  is given by 

 

( , , , , , ,...........) 0x t xx tt xtP u u u u u u                                      (1)                                                                                                 

 

where ( , )u u x t is an unknown function, P  is a polynomial in 

( , )u u x t  and its partial derivatives in which the highest order 

derivatives and the nonlinear terms are involved. The following 

shows the main steps of improved -Expansion method. 

 

Step . Suppose that ( , )u u x t . The variable allows the 

reducition to an ordinary differential equation for ( )u u 
 

 

( , ', '',...........) 0P u u u                                              (2)                                                                                                                    

 

where prime denotes the derivative with respect to  . 

 

Step . Suppose the solution of equation can be expressed by a 

polynomial in  as follows: 
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( )
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i
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G
u c

G






 
  

 
                                                       (3)                                                                                                                             

 

where ic  are real constants with 0ic   to be determined. N  is 

a positive integer to be determined. Here, N  is determined by  

 

 
 
 
considering the homogeneous balance between the highest order 
derivatives and non-linear terms appearing in the equation. 

If homogeneous balance is not possible, then integrating the 
Equation 2 and the constant term of integration supposed to be 

zero and then we determined the value of N by above procedure.   

The function ( )G   is the solution of the auxiliary linear ordinary 

differential equation: 

 

''( ) ( ) ( ) 0G G G                                                     (4)                                                                                                            

 

where   and   are real constants to be determined. 

 

Step . Substituting Equation 3 into Equation 2
 
and using second 

order linear ordinary differential Equation 4. Separate all terms with 

same order of  together, the left hand side of Equation 2 is 

converted into another polynomial in . Equating each 

coefficient of polynomial to zero. Then we get algebraic equation for 

ic ,  and  . 

 

Step . Since the following general solution of Equation 4 has been 

well known, then substituting ic  and general solution of Equation 4 

into Equation 3. We have more solution of non-linear partial 
differential Equation 1. 

 
 
TELEGRAPH EQUATION 

 
The Telegraph equation is 

 

xx tt tu au bu cu                                                                  (5)                                                                                                                                   

 

where u  is a function of x  and t . 

According to method described earlier, we make the 

transformation ( , ) ( ),u x t u x dt    . Then we get 

 

 21 '' ' 0ad u bdu cu     

 

where prime denote the derivative with respect to . 

Now by integrating this equation and let the integrating constant 
to be zero, we get 
 

 2 21
1 ' 0

2
ad u bdu cu                                                 (6)                                                                                                       

 

Now balancing 'u  and 
2u , we get 1N  . 

Therefore, we can write the solution of equation in form 

 

0 1

'
( )

G
u

G
  

 
   

 
                                                      (7)                                                                                                           

 

where 1 0  and ( )G G  . Now from Equations 4 and 7, we 

derive 
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Substituting Equation 8

 
to Equation 7

 
into Equation 6, setting the 

coefficient 
'

, 0,1,2

i
G

i
G

 
 

 
 to zero, we obtain a system of 

algebraic equations for 0 1 2, , , , ,a a a c   as follows: 
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Solving this algebraic equation by Maple gives: 
 
Case 1 
 

0 1, , , 0, 0c c                                                (9) 

                                                                                                       
Case 2  
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0 0 1
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2
, , , , 0

bd
c       


    

                         (10) 

 
Case 3  

 

 
   

2 22
0 0 1 0 0 1 0

0 0 1 12 2 2
1 1 1

2 22( 1)
, , , ,

1 1

ad bd ad bdad
c

ad ad

      
     

  

   
    

 

  (11)            
 

 

where 0 1, , , ,c     are arbitrary constants. 

For case 2, substituting the solution set (Equation 10) and the 
corresponding solutions of Equation 4 into Equation 7

 
and also 

substitute x ct    we have the solution of Equation 6
 

as 

follows: 
 

When 
2 4 0   , we get the solution: 

 

1 0 12 21
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For case 3, substituting the solution set (Equation 11) and the 
corresponding solutions of Equation 4

 
into Equation 7

 
and also 

substitute x ct    we have the solution of Equation 6
 

as 

follows: 
 

When 
2 4 0   , we get the solution 
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When 
2 4 0   , we get the solution 
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and 
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Figure 1. Graphical representation of the solution, when 

0 11, 3, 1, 0, 0, 1, .0001, .00005a b c d           which is the heat 

equation. 

 
 
 

 
 

Figure 2. Graphical representation of the solution, when 

0 1

11
, 6, 1, 2, 0, 1, 1, 5

4
a b c d           , which is the heat 

equation and it is a periodic solution. 
 
 
 

When 
2 4 0   , we get the solution 
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Figure 3. Graphical representation of the solution, which is the 
wave equation when 

0 1

11
, 6, 1, 2, 0, 1, 1, 5

4
a b c d            . 

 
 
 

 
 

Figure 4. Graphical representation of the solution, which is the 
heat equation and it is a periodic solution, when 

0 1

11
, 6, 1, 2, 0, 1, 1, 5

4
a b c d           . 

 
 
 
And they are as shown in Figures 1 to 6. 



 
 
 
 

 
 

Figure 5. Graphical representation of the solution, which is the 
wave equation and it is a periodic solution, when 

0 1

11
, 6, 1, 2, 0, 1, 1, 5

4
a b c d           . 

 
 
 

 
 

Figure 6. Graphical representation of the solution, which is the 
heat equation and it is a periodic solution, when 

0 1

11
, 6, 1, 2, 0, 1, 1, 5

4
a b c d           . 

 
 
 

Conclusion  
 
In  this  paper,  telegraph  equations  are  investigated  by  
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using the generalized  '/G G -Expansion method and 

various types of figures are shown such as wave, heat 
solutions of nonlinear evolution equations. Here, 
hyperbolic function, trigonometric function and rational 
function are also found. It is clearly said that, the 

generalized  '/G G -Expansion method is more accurate 

in searching for exact solutions of nonlinear partial 
differential equations. We have come to the conclusion 

that  '/G G -Expansion method is more convenient. In 

the similar way, we can represent graphically the 
behavior of other derived solutions where the exact 
solutions are solved with the help of software Maple. 
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